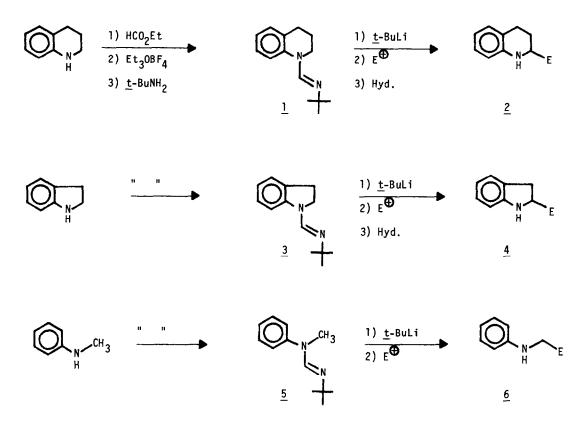

DIPOLE STABILIZED α -AMINO CARBANIONS. III. METALATION-ALKYLATION OF INDOLINES, TETRAHYDROQUINOLINES AND N-METHYLANILINES.

A. I. Meyers* and Stuart Hellring


Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

SUMMARY: Metalation of the 2-position in indolines and tetrahydroquinolines is feasible via their formamidine derivatives using <u>tert</u>-butyllithium. The N-methyl group in N-methylanilines is also metalated using this base.

The formamidine derivatives of secondary amines have shown versatility in C-C bond forming reactions by allowing the carbanions α - to the nitrogen to form readily and alkylate to homologated amines.^{1,2} We now describe further progress using this methodology to generate the impor-

tant synthetic equivalents A-C which are capable of being elaborated, via their formamidines, to C-substituted derivatives. In the accompanying letter,² metalation of tetrahydroisoquinolines was successfully achieved using LDA or sec-BuLi, however, the enhanced pK of the 1-position undoubtedly was important in proton removal. To assess the generality of the formamidine activation toward α -amino carbanions,it was necessary to determine if protons of weaker carbon acids would also undergo deprotonation. In this regard, the formamidine derivative of 1,2,3,4-tetrahydroquinoline 1 was prepared via its formamide (ethyl formate, 3 equiv, reflux)³. Treatment with triethyloxonium fluoroborate (1.1 equiv, C1CH2CH2C1, reflux, 16 h) was followed by addition of 1.1 equiv <u>tert</u>-butylamine. Aqueous alkali (10% KOH) wash and chloroform extraction gave 1 (97%, bp 100-105°/0.01 mm).⁴ Treatment of <u>1</u> with 1.1 equiv <u>t</u>-butyllithium (-78°, THF) and allowing the solution to warm to -20±5° and maintaining that temperature for 45 min. gave a deep red anion solution. The solution was cooled to -78° and the electrophile added as a THF solution. The color faded as the temperature was allowed to warm to -30° (\sim 1 h) and the solution quenched in water. Extraction with chloroform, drying (Na_2SO_A) , and concentration gave the alkylated formamidine as an oil which was either purified or carried on to the final product 2 (Table 1) using KOH-MeOH, lithium aluminum hydride, or hydrazine.

In a similar fashion, the indoline system $\underline{3}$ was prepared and metalated to a deep red anion and alkylated by various electrophiles to produce $\underline{4}$ (Table 1). It is noteworthy that the quinoline adduct with benzaldehyde $\underline{2}$ (E = -CH(OH)Ph) was isolated as a 1:1 mixture of diastereomers, whereas the indoline adduct $\underline{4}$ (R = -CH(OH)Ph) gave a 97:3 mixture of threo to erythro isomers. This high degree of selectivity encourages us to examine further examples and poses a possible route to enantiomerically pure derivatives under the influence of chiral adjuvants. The third case studied, namely formamidine $\underline{5}$, gave, on treatment with \underline{t} -butyllithium, the lithio anion which was readily alkylated with methyl iodide or \underline{n} -butyliodide. The former product was identical to an authentic sample prepared from N-ethyl formanilide (from treatment of formanilide with ethyl iodide, KOH, DMSO) using triethyloxonium tetrafluoroborate and \underline{tert} -butyl amine as described above. The latter example was converted to aniline $\underline{6}$ (E = \underline{n} -Bu) using hydrazine.

The formamidine moiety, after alkylation, was transformed back to the secondary amines $\underline{2}$, $\underline{4}$, and $\underline{6}$ by either heating in 2N KOH (25 ml) and DMSO (10 ml) for 3.5 h, or warming (50°) in hydrazine (95%, 3 equiv) with acetic acid (3 equiv) in 63% aq. EtOH (5 ml), or heating a THF solution of the formamidine and LiAlH₄ (3 equiv Li) at reflux overnight.⁶ The reductive cleavage was found to be successful for the hydroxyamines $\underline{2}$ (E = CH(OH)Ph) and $\underline{4}$ (E = CH(OH)Ph), whereas hydrolytic cleavage using KOH or hydrazine worked well for the other examples in the table.

The extensive utility of these α -amino carbanions to form C-C bonds adjacent to nitrogen has as its only synthetic precedent, the elegant work of Seebach⁷ using N-nitroso amines.⁸ However, the lack of physiological danger using formamidines coupled with their high

Amidine	_E €	Product	% Overall Yield From <u>1</u> , <u>3</u> , <u>5</u>	Bp ^a (mp)
1	MeI	<u>2</u> (E = Me)	65 ^f	100°/11 mm
1	<u>n</u> -BuI	OCN N-t-Bu	84	72°/0.05 mm ^e
<u>1</u>	Ph CH O	<u>2</u> (E = -CHPh) OH	64 ^b	(138-141°) ^c ,e
<u>3</u>	EtI	$\underline{4}$ (E = Et)	66 ^g	85°/0.2 mm
<u>3</u>	PhCHO	<u>4</u> (E = -CHPh) OH	73 ^d	(199-201°) ^{c,e}
<u>3</u>	MeI	N-t-Bu	83	67°/0.02 mm ^e
<u>5</u>	MeI	N- <u>t</u> -Bu	90	120°/0.05 mm ^e
<u>5</u>	<u>n</u> -BuI	$\underline{6}$ (E = \underline{n} -Bu)	68	130°/11 mm ^h

Table 1 - Alkylation of Quinolines, Indolines, and Anilines

a) Bulb-to-bulb distillation temperature, mp of hydrochloride salts; b) Mixture of diastereomers determined by integration of doublets at & 4.62 (J=6 Hz) and 4.70 (J=6 Hz); c) Recrystallized from ethanol-ether; melts with decomposition; d) Diastereomeric ratio 97% three:3% erythro determined by doublets at & 4.40 (three, J=8 Hz) and 4.59 (erythro, J=5.4) and confirmed by hplc analysis (97:3) using ethyl acetate-hexane; e) Satisfactory (±0.3%) elemental analyses were obtained; f) G. N. Fisher and H. P. Schultz, J. Org. Chem., 39, 635 (1974); g) G. Smolinsky and B. I. Feur, J. Org. Chem., 29, 3097 (1964); h) Beilstein, II, Vol. 12, 96. nucleophilicity, renders this methodology potentially very valuable.

<u>ACKNOWLEDGEMENT</u> The authors are grateful to the National Science Foundation and the Army Research Office (Durham) for financial assistance.

REFERENCES AND NOTES

- 1. For Part I, c.f. A. I. Meyers and W. Ten Hoeve, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 7125 (1980).
- 2. A. I. Meyers, S. Hellring, and W. Ten Hoeve, previous article in this issue.
- 3. J. Moffat, M. V. Newton, and G. J. Papenmeier, J. Org. Chem., 27, 4058 (1962).
- 4. This method was used to prepare formamidines <u>1</u> (bp 100-105°; 0.01 mm), <u>3</u> (bp 125°; 0.2 mm; mp 54-56° from pentane), and <u>5</u> (bp 60°; 0.03 mm) in 97, 87, and 91% yields, respectively. All three formamidines gave satisfactory elemental analyses.
- 5. Synthesis of 5 was also performed starting with commercially available N-methylformanilide in the manner described for 1 and 3.
- 6. The conditions in parentheses refer to quantities used on a 5 mmole scale. The LiAlH₄ cleavage was worked up by addition of $Na_2SO_4 \cdot 10 H_2O$ to the ice-cold reaction mixture, stirring at ambient for ~ 6 h, filtering the salts and washing them with THF. The combined THF solutions were concentrated to give the crude product which was purified by MPLC.
- 7. D. Seebach and D. Enders, Angew. Chem. Int. Ed., 14, 15 (1975).
- For an excellent review on other related methods using dipole-stabilized anions, see
 P. Beak and D. R. Reitz, Chem. Rev., 78, 275 (1978).

(Received in USA 21 August 1981)